IMPORTANT SAFETY INSTRUCTIONS

WARNING

SHARP EDGES
Use caution during assembly and operation of the 3D printer to ensure no sharp edges will cut you. Inspect the printer for any damage prior to use.

FIRE
Use caution to minimize risk of fire. Always operate the printer a safe distance away from flammable items. Use in well-ventilated areas. DO NOT place a storage cover on the unit during operation. Only place a cover on the printer after it has thoroughly cooled down.

HOT SURFACE
Motor surfaces become hot during operation. Hotend and heater cartridge become hot during operation. DO NOT touch hot surfaces, because they can cause severe burns. Allow the hotend to cool before touching it without proper tools.

SHOCK
There is a danger of electric shock. Use only undamaged electrical chords. DO NOT touch bare wires or receptacles. DO NOT touch the 3D printer or chords if hands are wet. Ensure that all cords are free of damage before connecting to the power supply. Ensure that you have a sufficient electrical supply for supporting the requirements of the motor.

RISK TO BREATHING
Always use your 3D printer in a well-ventilated and clean area. Gas emitted by melting of Polylactide (PLA) or Acrylonitrile butadiene styrene (ABS) can contain contaminants that are harmful to breathe. Never breathe the air that comes directly out of the hotend. This air is not suitable for breathing. If you feel ill from breathing while operating your 3D printer, stop and seek medical attention immediately.

Fragile
Electrical pins and sensors are delicate. Handle with care. Unless instructed, DO NOT force components together. Read the instructions carefully to prevent damaging parts during assembly or operation.
DITTO AT A GLANCE

- Filament Guide Tube
- Carriage
- X-Axis Bearing Cap
- Z-Axis Smooth Rod
- Y-Axis Bearing Cap
- Print Bed
- Z-Axis Threaded Rod
- Power Switch
- Electronics Fan Grill
- Tinkerine Interaction Module
- Hotend Cooling Fan

Ditto at a Glance
Ditto+ Bill of Material

Ditto+ Laser Cut Panels
(1) Hotend
(1) Cartridge heater
(1) Thermistor
(1) NEMA17 Extruder motor
(1) “Tensioning” bearing
(1) Cooling fan ducts
(1) Filament guiding tube
(2) 166mm GT2 belt
(2) 602mm GT2 belts
(2) 545mm GT2 belts
(8) Brass slider bushing
(8) 608ZZ ball bearings
(4) LM8 linear bearings
(8) Pulleys + (8) 3x5mm set screws
(2) 16-tooth pulleys
(8) Steel rods
(1) Bed plate
(3) Calibration springs
(3) Mechanical endstops
(3) Thumb Screw
(2) LED strips
(2) 40mm cooling fans
(1) 50mm cooling fans
(2) NEMA17 stepper motors
(1) NEMA17 stepper motor with threaded rod
(1) Arduino MEGA 2560
(1) RAMPS 1.4
(4) A4988 stepper drivers
(1) Power supply
(1) Power switch
(1) Female power plug
(1) Power cord
(1) USB cable

(30) M3 x 10 screws
(85) M3 x 16 screws
(12) M3 x 20 screws
(8) M3 x 25 screws
(11) M3 x 35 screws
(3) M3 x 50 screws
(3) M3 x 25 flathead
(1) M4 x 16 screws
(3) M4 x 20 screws
(10) M3 washers
(100) M3 nuts
(1) M4 washers
(10) M4 nuts
(2) Wires (Arduino to Power)

Tool List

Included In Kit
(1) M4 Allen Key
(1) M3 Allen Key
(1) 1.5mm Hex Key
(2) Zip Ties
Before you Start

Before you attempt to assemble any part of the Ditto / Litto 3D Printer, it is imperative that you read the build instructions fully and ensure you understand every part of the instruction. While Tinkerine Studio provides warranty for all parts of the 3D printer, this does not cover damage caused by not following the instruction manual or other end-user error.

Go down the BoM (Bill of Material) and tools checklist and ensure that you have all the required parts to assemble the Ditto 3D Printer. Extra screws have been included into the kit. If you find anything missing, please contact us via e-mail at support@tinkerines.com

Give yourself plenty of room and clean space during the assembly process. This prevents delicate components like the electronics or bearings from being damaged by dust or blunt force.

To ensure proper alignment of the panel and overall rigidity of the printer, it is highly recommended that the assembly is done on a flat surface.

Wipe off any excess grease you find on the screws with a napkin or an old towel. Screws are generally greased in order to prevent rusting during production. Cleaning off excess grease will keep your hands and printer clean during assembly.

Ditto is a rigid and robust 3D printer once assembled, however during the assembly process, extra care needs to be taken to make sure delicate parts require more precision than force to come together. If during the assembly process, you are unsure of the instructions, please contact us for support. Remember, unless instructed, no part in the assembly process should need to exert a high amount of force to fit pieces together.

Before starting calibration, ensure that all screws and pulley setscrews are properly tightened. Common calibration issues such as skipping and backlash are usually caused by loose pulleys and unsecured components.
Z - Platform Assembly

Parts Required

- M3x35 Screw x10
- M3x10 Screw x4
- M3x16 Screw x4
- M4x20 Screw x1
- M3 Nuts x14
- Lead Screw Nut x1

Tools Required

- M4 Allen Key
- M3 Allen Key

1. Screw nut comes attached to the lead screw motor. Remove from screw and insert it into the
2. After Steps 3 and 4, you should have two sets of the Z-axis arm that have the outer panel that mirror each other.

3. One by one, insert the M3 Nut into the T-slots shown in the picture. Screw the four M3x35 screws in but do not tighten them all the way.
4. During this point, double check to make sure all panels are properly aligned and the top side of the bed is leveled with the arms. Tighten all screws evenly.

5. During this point, double check to make sure all panels are properly aligned and the top side of the bed is leveled with the arms. Tighten all screws evenly.
6.

- M3 Nut (x4)
- M3x16 (x4)
- M4x20 (x1)
Ditto Frame Assembly pt. 1

Parts Required
- M3x16 Screw x39
- M3 Nuts x39

Tools Required
- M3 Allen Key
- Adhesive LED Strips

Right Side Panel
Top Front Panel
Left Side Panel

Central Back Panel
Motor Bracket
Z-Constraint A
Z-Constraint B
Z-Constraint C
Base Panel
Top Ring Panel
Bottom Bracket
Bottom Front Panel

+
Install the two Z-Constraints C as shown in the picture. Make sure to face the back panel in the correct direction. Insert the constraint into the correct tabs, place the M3 nuts in position and screw in the M3x16 screws from the other side.
Install Constraint A to the back panel and lightly secure with the two M3x16 screw + nut. Insert Constraint B underneath Constraint A and secure with four M3x10 screws. Tighten all screws once everything is aligned and in place.
Using the two LED light strip supplied in your kit, one-by-one peel off the backing to reveal the adhesive strip and stick the LED strip in the area shown in the picture. Make sure the LED is applied inbetween the T-Slot and edge of the inner ring. The front and back side of the ring panel will be wider.
Insert the top ring and bottom plate into the back plate, then secure with M3x16 and nuts in the T-Slots. For the top ring, the side with the led should be facing downward. Thread the LED wires into the hole shown in the picture.
Install the two side panels into the main body. Secure each side with five M3x16 screws and nut. Make sure the panel with the power switch and fan grill cutout is on the right side.
5.

Install the top front and top bottom panels. At this point, you will want to make sure all the panels are properly aligned and leveled to a flat surface. Due to the natural property of wood you wooden frame may not be perfectly tapered to the surface, however we can correct this later on once the other components are installed.
Install the top and bottom brackets into the main body. You will need to insert some screws from the front of the machine.
Ditto Frame Assembly pt.2

Parts Required

- M3x10 Screw (x4)
- M3x16 Screw (x6)
- M3x20 Screw (x4)
- M3x25 Screw (x2)
- M3 Nuts (x12)
- Z-Constraint D
- Endstop Switch (x3)
- Endstop Spacer (x5)
- Z-Axis Smooth Rod (350mm) (x2)
- Lead Screw NEMA17 Stepper Motor

Tools Required

- M3 Allen Key
Gently insert the Z-Axis smooth rods through the bottom Z-Constraint, linear bearing of the Z-Axis bed and finally the top Z-Constraint. If you feel there is any amount of resistance once you reach the linear bearings within the z-axis arms, do not force it in. Pull the rod backwards gently and retry. Rotating the rod gently while inserting may help it slide in more easily. Take your time with the bearing, forcing the rod in will cause the bearing balls to dislodge.
The Z-Axis rods should now sit flush within the bottom and top Z-Constraint. Attach Z-Constraint D to C, secure the two pieces together with three M3x16 screws each.
Lay the printer on its back. Insert the Z-Axis Motor and lead screw from the bottom and into the Z-Axis platform. To connect the lead screw into the nut within the platform you will need to manually turn the lead screw rod until it threads into the nut. Secure the motor to the frame with four M3x10 screws.
At this point, the printer’s top and bottom Z-Constraint should be in place and secured. The bed assembly is installed and threaded onto the Z-Axis motor and the motor is secured to the bottom panel. Double check to ensure that all screws are tightened. You may wish to manually adjust the bed by turning the lead screw to get better access to parts of the printer.
After the endstop trigger is installed. Thread the wires through the holes shown in the picture. Use one of the smaller adhesive wooden clips provided in your kit to prevent the wire from slacking/getting caught once the printer is in motion. Insert the wire into the clip and tape it to the bottom side of the top ring beside the LED strip.

Install each endstop triggers as shown. Note the orientation of the trigger and the direction it’s pointing. Depending on the trigger, you will need to different amounts of spacers between the endstop.
1. Insert both ends of the belt onto the Slider B piece. Make sure to line up the belt with the teeth so that there is no spaces left at the end of the slots.
2. Front Slider

X Axis Belt - 603 mm

A

B

C

M3x16
3. Back Slider

M3x16

X Axis Belt - 603 mm
4. Left Slider

Y Axis Belt - 545 mm

M3x16
5. Right Slider

M3x16

Y Axis Belt - 545 mm
Insert eight bearing into the respective slots within the frame. The cutouts are meant to be a snug fit with the bearings, however if you have trouble putting the bearings in there, give the wooden inner ring a very light sand with some sand paper.
With the previously assembly slider unit, you will now need to add the rod, pulleys, inner bearing cap, and depending on the slider you may need to include a looped belt. Assemble the slider units as shown on the picture and note the orientation of the pulley and panel direction of the inner bearing cap. Assembled each and set aside until you have all four slider units ready for the next step.

7. Front Rod

8. Back Rod
9. Left Rod

10. Right Rod
11. Font + Back Slider

Using the previous slider assembly pictures as a reference. Insert the Front and Back slider assembly into the frame. One way to do this would be to skewer the items on one by one as you insert the rods from one end.

For example, to insert the back rod from the right side of the frame, the order would be:

- Right Inner Bearing Cap > Small Pulley > Back Slider > Large Pulley > Looped Belt > Left Inner Bearing Cap

To insert the front rod from the right side of the frame, the order would be:

- Right Inner Bearing Cap > Small Pulley > Back Slider > Small Pulley > Left Inner Bearing Cap

Make sure to note the orientations of the inner bearing caps, and directions of the pulleys.
12. Left + Right Slider

* Side panel has been hidden to show gantry*

Similar to the Front and Back rod assembly, installing the Left and Rod right will require you to insert the rod from one end while inserting the parts in order. Here is the tricky part: While skewering the pulleys onto the left and right rods, you will also need to skewer the belts from the front and back sliders.

To insert the left rod from the front side of the frame, the order would be:

Front Inner Bearing Cap > Small Pulley > Back Slider > Small Pulley > Back Inner Bearing Cap

To insert the right rod from the front side of the frame, the order would be:

Front Inner Bearing Cap > Small Pulley > Back Slider > Large Pulley > Looped Belt > Back Inner Bearing Cap

Once the Left and Right rods are installed, you will need to pop the Front and Back rods back out slightly to loop the belts onto the pulleys. Once the belts are seated onto the pulley, you will need to use a bit of force to insert the rods into the bearing.

After installed the the gantry, all the belts (except for the closed loop belts) should be looping across a pulley on each end.
13.

Install the outer bearing caps to cover the exposed bearing and prevent the rods from sliding out. If you have oriented the inner bearing caps correctly in the previous steps, it will align with the outer bearing caps. If not, you need to flip the inner bearing cap.
Gantry Assembly pt.2

Parts Required

X-Axis Carriage Smooth Rod (310mm)

Y-Axis Carriage Smooth Rod (280mm)

Tools Required

M3 Allen Key

Pre-assembled Carriage with Hotend
1. The frame has been hidden to give you a clearer view. To insert the cross rods, one by one take the rods and insert it into one end of the slider. Push the rod into the first slider to give you enough room to bring the rod up into the gantry so it becomes leveled with the second slider. Then retract the rod so it can be inserted into the second slider.

For Pre-Assembled Carriage:
Position the carriage in the right direction (Arrow on assembly pointing toward back of printer), take any of the two rods and insert it carefully into the respectively linear bearing. Bring the rod and carriage into the gantry space, and insert one end of the rod into the slider, twist the rod while supporting the slider will help you move the rods easier. Once you have enough clearance to insert the other of the rod into the slider, twist the rod again to insert into the slider on the opposite side. Repeat with second rod.

Take extra care when inserting the smooth rod into the linear bearing. Go at it slowly and make sure to not force the rod into the bearing to prevent the ball bearings from dislodging.
At this point this is what your gantry should look like from the top. Make sure to aligned the pulleys on both sides of the belt so the belt is sitting parallel with the middle of the sliders. Tighten the sets screws on the pulleys once you have aligned them all.
3.

2015-16 versions of the Ditto+ 3D printer will not require the belt tensioning screws to be installed.

Insert the belt tensioning screws as shown into the four sliders. Refer to the image below to see a closer view.

Push down on the belt to create a gap so you can screw in the M3x10 screw over the flat surface of the belt. Turn until the screw threads into the far side of the slider panel and the screw head is flush with the slider.
You're almost done with the gantry assembly. For the most part you should now have a gantry system that you can move manually by hand. Move on to part three of the gantry assembly to complete the gantry system.
If you received your Ditto+ Kit after 1/15/14 you may have v.2 timing pulley included in the kit. Follow the instruction as per the v.1 pulley.

Gantry Assembly pt.3

Parts Required
- NEMA17 Stepper Motor x2
- Motor Bracket
- Motor Wedge
- M3x10 Screw x8
- M3 Washer x8
- M4x16 Screw x1
- M4 Washer x1
- M4 Nuts x1
- M3x10 Screw x8
- M4x16 Screw x1
- M4 Washer x1
- M4 Nuts x1

Tools Required
- M3 Allen Key
- M4 Allen Key

- 36 Tooth Timing Pulley
- 18 Tooth Timing Pulley

- v.1 x2
- v.2 x2
A. Fasten the motor bracket to the motor and slide the pulley onto the motor shaft. Lightly tighten the motor bracket screws as you will need to make minor adjustments in the second step.

B. Before inserting the motor bracket into the slot on the frame, insert a M4 nut into the T-slot.

C. Look the belt around the pulley and seat the motor into the slot. You may need to shift the motor foward or backward within the bracket to make sure the belt is tensioned and does not have extra slack. Tighten the screws once the motor is in the correct position.

D. Position the pulley so the belt is perpendicular and not angled in a way so that the belt is rubbing against the pulley or the wooden frame. Tighten the set screw of the pulley on the flat edge of the motor shaft once you have positioned the pulley.

E. Insert the M4 screw from the bottom and secure the motor bracket to the frame. Insert the motor wedge to tuck it under the other side of the motor.

F. Connect the 4-pin motor wire to the port located on the bottom edge of the motor.
3.

A. As shown in Step 3, insert the motor from the back with the pulley already sitting in the looped belt from the front. The tapered end of the pulley should be pointing away from the motor.

B. Insert the M3 screws to secure the motor to the frame. Make sure to position the motor on the frame at a point where the belt is properly tensioned to avoid giving the belt any slack.

C. Tighten the setscrew within the pulley on the flat edge of the motor shaft to secure the pulley.

D. As shown in Step 4, take a minute to ensure that all belt are properly aligned. Belt should always sit perpendicular to the pulley and should not be angled in any way. Also make sure the the belt teeth is fully seated into the grooves of the pulley and not chewing into the walls of the pulley. You may need to loosen the sets screws on the pulley to re-adjust the positions. Check all belts.

E. Connect the 4-pin motor wire to the port located on the bottom edge of the motor.
Your printer’s gantry system should be fully assembled now. You should be able to manually move the carriage around on the X+Y axis. Double check to make sure all belts are properly secured and tensioned, and that all setscrews are properly tightened.
Extruder Assembly

Parts Required
- M3x16 Screw x36
- M3x25 Screw x2

Tools Required
- M3 Allen Key

Parts Required
- Fan Shield x1
- Electric Fan x2
- Fan Duct x2
- Thernistor
- Ceramic Heater Cartridge

Extruder Assembly

Hotend Assembly
1. Place the bottom portion of the extruder onto the carriage and insert the hotend + hotend mount into the center of the carriage through the slot located on the back of the carriage.

With the two M3x20 screws, secure the extruder and hotend to the top plate of the carriage. The screws should thread into the hotend mount, securing all the components together.

Ensure that the acrylic spacer is attached to the top of the hotend and leave the ceramic insulation wrapping attached to the hotend.

2. From the front, your carriage should now look like this. Make sure the larger portion of the extruder is on the left side. The extended portion of the hotend should also be pointing toward the left.
Now that the hotend and the bottom portion of the extruder is secured to the carriage, we'll now re-assemble the extruder. Place the spring back into the holder pin (Package with bed-leveling springs) and pinch it with the top portion of the extruder. Line up the mounting hole and screw in the two M3 screws that we have removed earlier.
From the top of the extruder, look down and check that there is a clear path from the extruder to the nozzle. The groove of the hobbed bolt should be positioned that it feeds into the hotend. If the alignment of the hob is off, use an Allen key to loosen the setscrew on the hob and reposition. Make sure to set the screw on the flat face of the extruder motor shaft.
On the back face of the hotend, there will be two slots. The large of the two slot will be for the heater cartridge, and the smaller one is designated for the thermistor. Insert the heater cartridge and thermistor into their respective slots and secure them in place using the setscrews located on the sides of the hotend. Once the thermistor and heater cartridge are in place, route the wires into the wire guide shown in the picture (blue path).

⚠️ Your printer’s hotend may already have the heater cartridge and thermistor already installed into the hotend. In this case you will just need to route the wires as shown.

⚠️ Take extra care when tightening the setscrew for the thermistor. Turn the setscrew very slowly as the glass on the thermistor will crack if there is too much pressure applied. There just needs to be enough force applied so the thermistor does not slide out of its slot.

On the back face of the hotend, there will be two slots. The large of the two slot will be for the heater cartridge, and the smaller one is designated for the thermistor. Insert the heater cartridge and thermistor into their respective slots and secure them in place using the setscrews located on the sides of the hotend. Once the thermistor and heater cartridge are in place, route the wires into the wire guide shown in the picture (blue path).
To install the print bed fan, grab a fan and point the sticker side downward. Orientate the fan so the wire is pointing toward the back of the printer, doing so will give you cleaner look when you are performing wire management. Similar to the wires for the hotend, route the fan wire up the wire guide. It is recommended that you mark the ends of the wire so you are able to distinguish the separate fans during the wire connection process.

Insert the M3 screw through the bottom of the air duct and fan, there are two mounting holes on the bottom of carriage. The mouth of the fan duct should be point toward the hotend.
To install the hotend cooling fan, grab the fan and point the sticker side toward the hotend. The fan should sit between the two carriage plates so if it does not fit, you will need to loosen the carriage screws. Route the fan wires so that it comes out of the top right corner and sits in front of the fan and wire guide. Secure the fan to the carriage with screw 1 and attach the fan guard to the with screw 2 + M3 Nut.
You have completed the extruder and fan assembly. Double check to make sure all the fans are facing the right way and that all the wires are properly routed to go up the wire guide. All components on the carriage (hotend, motor, fan) should be properly secured and tightened. Connect the 4-pin motor wire to the extruder motor.
You are almost done assembling your printer. Move on to the next step to install the power supply and electronics to the printer.
Electronics / Spool Holder Assembly

Parts Required

- M3x10 Screw x2
- M3x16 Screw x13
- M3x20 Screw x3
- M3x25 Screw x2
- M3 Nuts x20

Tools Required

- M3 Allen Key

Motor Compartment 1 of 2

Motor Compartment 2 of 2

Back Bracket

Electric Socket

Power Switch

50mm Electric Fan x1

Power Supply

ARDUINO

Spool Holder

Arduino Mega 2560

Parts Required

- M3x10 Screw x2
- M3x16 Screw x13
- M3x20 Screw x3
- M3x25 Screw x2
- M3 Nuts x20

Tools Required

- M3 Allen Key

Motor Compartment 1 of 2

Motor Compartment 2 of 2

Back Bracket

Electric Socket

Power Switch

50mm Electric Fan x1

Power Supply

ARDUINO

Spool Holder

Arduino Mega 2560
1. Insert the power socket and power switch as shown. The power switch is pressure fitted and the power socket will need to be secured by two M3x16 screw + M3 nut.

Connect the L line (Black) from the power socket to the middle prong on the power switch. Leave the other wires along for now as they will be connected to the power supply later.
Secure the 50mm fan to the back side of the air intake grill. The sticker face of the fan should point toward the center of the printer. Secure the fan to the frame with two M3x20 screws + nuts.
Secure the power supply and Arduino board to the bottom of the face plate. You will need to use M3 nuts to secure the Arduino board. Orientate the power supply so the port are pointing toward the Arduino, and orientate the Arduino board so the USB ports are pointing toward the back of the printer.

⚠️ The power supply is set to 110v by default for use in North America. To use 220v (Europe), follow the instruction on the power supply to flick the switch to 220v.
After the power socket is in place, install the outer bracket by securing it with the T-slots shown in the picture.
The back motor cover is composed of two pieces, assemble and secure with the two T-Slots on the top edge. The motor cover is then secured with two T-Slots on the sides. The nuts on the side will require more effort to push in as they were intended to be pressure fitted. You can choose to leave the motor cover off for now as we will require access to thread in the filament guide tube later on.
To assemble the spool holder, sandwich the smaller of the three spool holder pieces with the other two and secure it with the M3 screw and M3 nut. Do not tighten this yet as it will make it hard to insert the assembly into the main body.
Insert the spool holder assembly to the frame and secure the spool holder with four M3 screws inserted from the front side of the printer. Tighten all screws.
Print Bed Assembly

Parts Required

- M3x25 Flathead Screw x3
- Calibration Springs x3
- Thumb Nut x3

Tools Required

- M3 Allen Key

Filament Guide Tube

Print Bed

T.I.M LCD/SD Controller
One by one, place a spring between the print bed and the wooden platform (beveled hole side up). Insert the flathead M3x25 screw from the top and secure it with a thumb nut. Repeat until you have all three points secured. Turn the thumb nut to tension the spring, ideally you will want the spring to be compressed so the bed is firmly planted onto the platform.
Take the filament guide tube and thread it through the cut out located on the corner of the motor cover and motor bracket. Insert the other end into the top of the extruder. Remove the motor cover by unscrewing the two M4x20 screw to thread the guide tube through more easily.
To install the T.I.M LCD controller to Ditto:
1. Connect the Smart Adapter onto the Arduino board.
2. Connect the ribbon cables from the Smart Adapter to the back of the LCD control unit as shown above.
You’ve finished assembly your very own 3D printer (well almost!). With all of the components in the printer, move on to the next step to begin the wiring portion of the assembly.
1. Route the wires from the Left Side LED, X+Y+Z-Axis Endstop, X+Y Motor wire through the wire holes from the front side of the machine to the back. Route the wire so it runs behind the Y-Axis motor and underneath the X-Axis motor. Run all wires through the hole located on the back corner of the motor bracket.

2. Gather all the wires from the carriage fan, heater cartridge, thermister, Right Side LED, and extruder and route the wires through the hole located on the motor bracket.

3. You may choose to label the wires with masking tape before you route them through the hole located on the bottom right corner of the printer. This will help you indentify the wires later on.

NOTE 1: For the wires coming from the extruder units, make sure to leave enough slack so the wires still have some slack once the extruder moves to it’s homing location (Front left corner).

NOTE 2:
Once the wires are all routed and connected to the electronics, use the supplied wire sleeve to clean up the exposed wires on the back and top of the machine. Use the larger sleeve for the back portion of the machine and the smaller wire sleeve to wrap the wires coming from the extruder.

NOTE 3
After you have finished sleeving all the wires and have confirmed that all electronic components are in working order. Use the supplied zip-ties to secure the ends of the wire sleeve.
There is a small triangle on the rightmost side. Make sure it aligns as shown in the diagram. If there is no marking on the housing, face the exposed pin side toward the electronics cooling fan.
Negative ends of the wire that do not have connector pins are marked with a black ink on the ends.

After you have thread the endstop wires through the black plate, attach the pins into the connector housing before you plug them in.

Heater Cartridge
Extruder Motor
X Motor Y Motor Z Motor
X Endstop Y Endstop Z Endstop
Thermistor
Cooling Fans
(Hotend + Electronics)
X Endstop
RAMPS 1.4
RAMPS 1.4
LED Strips
Cooling Fans
(Print Bed)
Heated Bed
Power Supply
Power Socket + Switch
That's it! You have just finished assembling your very own Ditto 3D printer. However there are just a few things to check before you power-up the printer for the very first time:

1. Make sure all screws and components are properly screwed down and secured.

2. While manually moving the the gantry system (extruder, belts, pulley, smooth rods, bearings), all components should operate smoothly and not interferre with one another. Check that all sets screws on the pulley are tightened, and all belts are aligned so they are seating fully in the teeth of the pulley.

3. All electronics are properly plugged in and seated into their correct ports. Make sure there are no exposed wires in contact with electronic components, and the electronic cooling fan is properly mounted and directing airflow to the A4988 Stepper Driver.

4. Make sure there is no foreign objects along the path of moving components. Avoid using lubricant on the linear bearing (Z Axis + Carriage). Most lubricants (especially ones that contain propellants) might absorb dirt and become more viscous over time, which can cause more friction and cause damage to the bearings.
Preliminary Run-Through

Stage 1

1. Plug in the printer. Do not turn on the printer yet.

2. Connect the USB from the printer to the USB port on your computer. If you have an LCD/SD card unit, connect it to your printer.

3. Test the X-Axis endstop. Manually move the carriage by hand and push it to the left side of the printer and check to see if the slider will trigger the endstop. You will hear a click when endstop is trigger. Repeat the test with the Y-Axis Endstop. If the endstop does not trigger, you will need to re-adjust the position of the endstop so it makes contact with the trigger pieces on the slider.

4. Tighten the thumb screws underneath the print bed springs. This will tension the springs and prevent the bed from moving around during printing.

5. Test the Z-axis endstop. Manually turn the lead screw to bring the bed upward. As the bed approaches the nozzle, adjust the Z-axis trigger screw located on the back corner of the printer bed so that it makes contact with the endstop lever before the nozzle touches the surface of the bed. The ideal distance between the nozzle and print surface should roughly be the thickness of a piece of paper.

6. Calibrate the print bed. Using the 3-point leveling system, manually move the hotend to the each of the four corners on the print bed. At each of the four point, adjust the thumb screws so the bed is evenly leveled on all sides.

Stage 2

1. Turn on the printer.

2. Check that both LED light strip are lit.

3. Check that the hot-end cooling fans are on and directing airflow to the hot-end within the carriage unit.

4. Check that the electronics cooling fans are on and directing airflow to the Arduino + A4988 Stepper drivers.

5. Check that the print bed cooling fan isn't on. The fan for the print bed should only activate during printing.

6. If the LED or fan do not turn on, turn off the printer and disconnect the power source. Check your wiring to see if all wire are properly seated and secured in their sockets.

Stage 3

1. Use the LCD T.I.M Controller, navigate to the Control menu and test movement on all axis.

2. Home all axis. If the printer triggers any of the endstop but doesn’t stop, shut off the printer immediately. Check the endstop pin connector to see if the pins are fully seated into the housing, then make sure the housing are properly connected to the pins on the electronics board. Since the X and Z axis endstop are grouped together, there might be a chance that you have them plugged in reversed.

3. Using T.I.M, set the preheat temperature for PLA (220C). Monitor the temperature level and check that the heater cartridge and thermistor is working properly. If the hotend does not heat up, check that the heater cartridge and thermistor is plugged in correctly. Do not touch hotend with your finger to check the temperature as the cartridge can be functioning correctly while the thermistor is providing a false reading.

4. Your printer is ready to start printing. Follow the calibration guide to start printing your first object!